
OpenGL Programming Guide: The Official
Guide To...

CLICK HERE

https://fancli.com/2tAvIY


This assignment serves as an introduction to the OpenGL graphics library. You will be required to
generate a room scene which can be navigated in a walk-through fashion. You will begin the project
by implementing the OpenGLanalogs of many of the methods that you have implemented for the last
ray-tracerassignment. Emphasis is placed both upon the implemention of OpenGL's basic
capabilities (e.g. shading. lighting, transparency, materials properties, etc.) and their use in
generating more involved effects (e.g. shadows, reflections.)
An overview of the code you will be using can be found here or downloaded here.An overview of the
.ray file syntax can be found here.A (Windows x64) compiled version of the renderer implementing
some of the basic features can be found here.The OpenGL programming Guide is an invaluable
resource in assisting with OpenGL implementation. You can find a link to the guide here.Getting
StartedYou should use the same code-base as in previous assignments (Assignments.zip), as a
starting point.As in the previous assignments, code modification should be relegated to the
*.todo.cpp files. After you copy the provided files to your directory, the first thing to do is compile
the program. To do this, you will first have to compile the JPEG library and then compile the
assignment3 executable. On a Windows Machine
Begin by double-clicking on Assignments.sln to open the workspace in Microsoft Visual Studios.

Compile the Assignment3 executable by right-clicking on "Assignment3" and selecting "Build".
(If the JPEG.lib, Image.lib, Ray.lib, and Util.lib libraries have not already been compiled, they
will be compiled first.)
The executable Assignment3.exe is compiled in Release mode for the 64-bit architecture and
will be placed in the root directory.

On a Linux Machine

Type make -f Makefile3 to compile the Assignment3 executable. (If the libImage.a, libRay.a,
and libUtil.a libraries have not already been compiled, they will be compiled first.) This
assumes that JPEG libraries have already been installed on your machine. (If it hasn't been
installed yet, you can install it by typing sudo apt-get install libjpeg-dev.)
The executable Assignment3 is compiled in Release mode and will be placed in the root
directory.
If you are having trouble linking either to the gl libraries or the glu libraries, you should install
the associated packages: sudo apt-get install libgl1-mesa-dev libglu1-mesa-dev For subsequent
assignments, you should also install the glut package: sudo apt-get install freeglut3-dev

Code ModificationsThe code you will be starting with in this assignment is essentially the same code
you used for the previous assignment. However,there are a few small changes:

For those of you who have not (properly) implemented the Shape::updateBoundingBoxfor the
different subclasses of Shape, implementation of these methods is provided for this
assignment.(The method is needed to determine the center and radius of the scene.) The
changes can be found in the following files:

Ray/box.todo.cpp
Ray/cone.todo.cpp
Ray/cylinder.todo.cpp
Ray/shapeList.todo.cpp
Ray/sphere.todo.cpp
Ray/torus.todo.cpp
Ray/triangle.todo.cpp

Please note that these files are old, and some of the member functions no longer exist within
the codebase. So just grab the implementation of the Shape::updateBoundingBox method and
ignore the rest.



How the Executable WorksThe executable takes in as a mandatory arguments the input (.ray) .ray
file name. Additionally,you can also pass in the dimensions of the viewing window and the
complexity of the tesselation for objects like thesphere, the cylinder, and the cone. (Specifically, this
specifies the resolution, e.g. the number of angular samples.) It is invoked from the command line
with:% Assignment3 --in in.ray --width w --height h --cplx cFeel free to add new arguments to deal
with the new functionalities you are implementing. Just make sure they aredocumented. What You
Have to DoThe assignment is worth 30 points. The following is a list of features that you may
implement. The number in parentheses corresponds to how many points it is worth.

(1) Implement theRay::Camera::drawOpenGL(in Ray/camera.todo.cpp) to draw the camera.
(1) Implement theRay::ShapeList::drawOpenGL(in Ray/shapeList.todo.cpp) to draw the scene-
graph nodes. For now, ignore the input glslProgram parameter.
(2) Implement theRay::TriangleList::drawOpenGL(in Ray/shapeList.todo.cpp)
andRay::Triangle::drawOpenGL(in Ray/triangle.todo.cpp) method to draw triangles with per-
vertex normals. For now, ignore the texture coordinatesand the glslProgram parameter.
(2) Implement the Ray::Sphere::drawOpenGL(in Ray/sphere.todo.cpp) method to draw a
sphere at the appropriate tesselation.For now, you can ignore the input glslProgram
parameter.
You may not use the gluSphere function from the GLU library to assist you with this. Instead,
you will have to explicitly generate the primitive (triangles/polygons) and render them
yourself. You should use the parameter Shape::OpenGLTessellationComplexity to set the
tessellation complexity.
(2) Impelement theRay::Material::drawOpenGL(in Ray/scene.todo.cpp) method to draw the
material properties.For now, you can ignore the input glslProgram parameter.
(3) To draw the light sources, implement:

Ray::DirectionalLight::drawOpenGL(in Ray/directionalLight.todo.cpp);
Ray::PointLight::drawOpenGL(in Ray/pointLight.todo.cpp); and
Ray::SpotLight::drawOpenGL(in Ray/spotLight.todo.cpp)

The input index parameter specifies which of the OpenGL lights you are using and should be
used forspecifying the light parameters in the RayLight::drawOpenGL
method:glLightfv(GL_LIGHT0+index, ...);
glEnable(GL_LIGHT0+index);For now, you can ignore the input glslProgram parameter.
(2) Modify the implementation ofRay::AffineShape::drawOpenGL(in Ray/shapeList.todo.cpp) to
take into account the local transformation returned by the call:Ray::AffineShape::getMatrix.
You can do this by pushingthe appropriate matrix onto the stack prior to rendering and then
popping it off after you are done.For now, you can ignore the input glslProgram parameter.
(3) Implement triangle texture mapping. To do this you will have to:

Modify the implementation ofRay::Triangle::drawOpenGL(in Ray/triangle.todo.cpp) to
specify the texture coordinates prior to specifying the vertex positions.
Modify the implementation ofRay::Material::drawOpenGL(in Ray/scene.todo.cpp) method
to enable and bind the texture if it is present.
Modify the implementation ofRay::Texture::initOpenGL(in Ray/scene.todo.cpp) method
to generate the texture handle.

(1) Implement theRay::Box::drawOpenGL(in Ray/box.todo.cpp) method to draw a box.For now,
you can ignore the input glslProgram parameter.
(1) Implement theRay::Cylinder::drawOpenGL(in Ray/cylinder.todo.cpp) method to draw a
cylinder with bottom and top capsat the appropriate tesselation. For now, you can ignore the
input glslProgram parameter.
You may not use the gluCylinder and gluDisk functions from the GLU library to assist you with
this.Instead, you will have to explicitly generate the primitives (triangles/polygons) and render
them yourself. You should use the parameter Shape::OpenGLTessellationComplexity to set the



tessellation complexity.
(1) Implement theRay::Cone::drawOpenGL(in Ray/cone.todo.cpp) method to draw a cone
capped off at the bottomat the appropriate tesselation. For now, you can ignore the input
glslProgram parameter.
You may not use the gluCylinder and gluDisk functions from the GLU library to assist you with
this.Instead, you will have to explicitly generate the primitives (triangles/polygons) and render
them yourself. You should use the parameter Shape::OpenGLTessellationComplexity to set the
tessellation complexity.
(1) Implement theRay::Torus::drawOpenGL(in Ray/torus.todo.cpp) method to draw a torus.at
the appropriate tesselation. For now, you can ignore the input glslProgram parameter.
You may not use the glutSolidTorus function from the GLUT library to assist you with this.
Instead, you will have to explicitly generate the primitive (triangles/polygons) and render them
yourself. You should use the parameter Shape::OpenGLTessellationComplexity to set the
tessellation complexity.
(1)Implement mouse control to facilitate translating the camera about the scene.To do this you
will have to modify:

Ray::Camera::moveForward(in Ray/camera.todo.cpp) to implement a translation by a
distance of dist along the forward direction.
Ray::Camera::moveRight(in Ray/camera.todo.cpp) to implement a translation by a
distance of dist along the right direction.
Ray::Camera::moveUp(in Ray/camera.todo.cpp) to implement a translation by a distance
of dist along the up direction.

(2)Implement mouse control to facilitate rotating around the scene scene. You should
implement a crystal-ball system inwhich dragging the left mouse button rotates the viewer
around the model, rotating either about the up-direction orthe right-direction. To do this you
will have to modify:

Ray::Camera::rotateUp(in Ray/camera.todo.cpp) to implement a rotation of
angledegrees, around the up-axis, about the point center.
Ray::Camera::rotateRight(in Ray/camera.todo.cpp) to implement a rotation of
angledegrees, around the right-axis, about the point center.

(2) Implement full scene anti-aliasing using the accumulation buffer.Hint: See the OpenGL
Programming Guide for information about jittering.
(You may need to let GLUT know that you are planning to use an accumulation buffer as well.
This can be done by modifying the flags passed in to glutInitDsiplayMode in window.cpp.)
Generate a .ray file describing a room scene with:

(1) Four walls, a floor and ceiling.
(3) A table, several chairs, etc. You may choose more interesting furnishings.
(1) At least one transparent surface, perhaps the table top.
(1) At least three texture mapped surfaces, each with a different texture.
(1) At least three point or spot light sources.
(2) A Luxo Jr. style lamp with keyboard and/or mouse controls for manipulating the joints
of the lamp interactively while the spot light representing the bulb moves accordingly.
Hint: see the robotic arm example in the OpenGL Programming Guide.
(2) A mirror. Hint: Reflect the world about the mirror and render it again through a
stencil buffer.
(2) Shadows on at least one surface (such as the floor or table). Hint: See the OpenGL
Programming Guide for the transformation which renders objects onto a plane.
(2) An object that responds to user mouse clicks (such as a light switch which turns
on/off a light when clicked on by the user).

Support efficient rendering using vertex buffer objects. For this you will need to generate
(bind, and set) the buffer objects in Ray::Shape::initOpenGL and draw the buffer objects in



Ray::Shape::drawOpenGL.
(1) Implement vertex buffer objects for Ray::TriangleList.
The implementation of Ray::TriangleList::initOpenGL has already been provided for you,
with the vertex buffer object stored in Ray::TriangleList::_vertexBufferID and the
element buffer object stored in Ray::TriangleList::_elementBufferID. The vertex buffer
stores information about positions, normals, and texture coordinates. The number of
vertices is stored in Ray::TriangleList::_vNum and the number of triangles/elements is
stored in Ray::TriangleList::_tNum.
(1) Implement vertex buffer objects for Ray::Sphere.
(1) Implement vertex buffer objects for Ray::Cylinder.
(1) Implement vertex buffer objects for Ray::Cone.
(1) Implement vertex buffer objects for Ray::Torus.

OpenGL Shading Language (See the specification for more details.)
(2) Write vertex and fragment shaders that implement the traditional fixed pipeline with
Phong Shading using point and spot lights. (An implementation using directional lights
has already been provided.)
(2) Adapt your Phong shader to support bump mapping.

(?) Impress us with something we hadn't considered...

The assignment will be graded out of 30 points. In addition to implementing these features, there
are several other ways to get more points:

(1) Submitting one or more images for the art contest.
(1) Submitting one or more .ray files for the art contest.
(1) Submitting one or more shader files for the art contest. You may consult online resources
(make sure to do reference) but the shaders must be your own creation.
(2) Winning the regular art contest,
(2) Winning the .ray file art contest,
(2) Winning the shider file art contest.

It is possible to get more than 30 points. However, after 30 points, each point is divided by 2, and
after32 points, each point is divided by 4. If your raw score is 29, your final score will be 29. If the
raw scoreis 33, you'll get 31.25. For a raw score of 36, you'll get 32.

OpenGL Programming Guide: The Official Guide To...

21f597057a


